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SOME REMARKS ON DYNAMIC SOARING
Dr. E. Fritsch?

ABSTRACT. Extensive idealization of dynamic soaring makes
it possible to treat tne probiem completeiy analytically.
The influence of wind shear, air speed, lift-drag ratio and
the angle of inclination of the flight path on dE/dh is
caicuiated. A reiationship is also derived for the antici-
pated cruising speed in the jet stream. The most satis-
factory air speed and optimum angle of inclination of the
flight path are determined for the given values. The
cruising speeds ard gains of energy to be expected in the
jet stream are estimated numerically. Some hints for the
pilot regarding flight in the jet stream are given in the
paper.

Some Remarks on Dynamic Soaring

_ The glider pilot uses available thermals as well as upwinds and ascending /i*
air currents as sources of energy. The albatross shows us that it is techni-
cally possible to make longer soaring flights by certain flight maneuvers in a
layer where the wind intensity varies with altitude. The wind shear is partic-’
ularly strong in the jet stream. Our knowledge in this area has recently been
expanded [1], and has reached the point whers we can expect the first tests

using gliders to begin in the near future [2].

The principle of dynamic soaring flight can be explained by a numerical
example.
i} The wind velocity at a given altitude is 10 km/h greater than the wind
velocity at the surface of the water. An albatross is flying against the wind
; short distance above the water, at 50 km/h (Figure 1, 1). When it climbs to
to layer having a velocity 10 km/h greater, it flies at a speed of 60 km/h
relative to the surrounding air. It then turns so that it is flying with the ‘
wind at a speed of 60 km/h relstive to the surrounding air (3). Its speed i
relative to the .ir is thereby retained. This means that it is traveling 70

km/h relative to the ground. It retains this speed relative to the ground even |

lperorlub of the GDR. Cd
*Numbers in the margin indicate pagination in the foreign text.
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while descending to zero altitude at (4). As we can see, the albatross gains

considerable speed without physical exertion.
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Figure 1.

The change in velocity owing to th: conversion of potential energy and the
wind velocity that may be present at zero altitude need not be taken into con-

sideration in this cyclic process. Their effects cancel each other out in the

%
long run.
Can we do the same as the albatross?
1. Energy Balance During Flight in a Current with Strong Wind Shear /1

The aircraft flies on a path with an instantaneous angle of inclination d
(Figure 1). The equation of motion is as follows:

av’ j
M Ol -Mg sin . -W(v) (1)

v’ is the speed of an inertial system. This speed is

measured by an outside observer.
V is the speed rFlative to the surrounding air. This

speed is shown on an indicator in the aircraft.

¢
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M is the mass of the aircraft.




g is the acceleration due to gravity.

W (V) is the air resistance of the aircraft.
rrom Figure 2 we can see that
Vi =V+W ()
W (h) is the speed of the wind as a function
of the altitude.

<t

Figure 2.

t

Let the angle between Vand V' be small. We will then have as the com-

ponents in the direction of motion:

- Vi = V- W () cos a 2
If we consider i i

W (V) = Mge (3) |

i !

(e = lift-drag ratio) !

and ) i
‘ x  TED |
h =V siprq o (4) |
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we will have from Equations (1) to (4)

dv aw (h)
dt dh

In the following, we shall use u to represent the change in wind velocity with /2

=-Mg - sin a -Mg - ¢ -My

sin a 2o0s a (5)

altitude, g% .
Is it possible to make the energy balance positive during one flight
phase?

The energy balance is obtained in the usual way from the equation of
motion (5) by multiplying it by the velocity and rearranging the equation. We

then have

*
dE _d %. v2 +Mgh) = Mv (vu sin a cos a -ge) (6)

The energy gain with height is moré 1nterest1ng for the problem at hand

than is the energy gain with time.
With (4) and (6), this relationship will be

= o =M G cos o S —

where %g depends on the angle of inclination of the flight path.
From %; (%%) = 0, we have the definitive equation

A - S - ;
- . sin a = /5——‘}- + Ycos a (8):

for the most favorable angle of inclination.

[

In most cases, §cos o can be equaﬁed to 1 (for example, gcos 40° = 0.91).
A comparison of the solution by means of the approximation §cos a =1 with a

graphic solution yielded an error of 1° for the values given in this section.

According to (3), the change in sgeed with altitude can amount to 20 knots/
1000 feet (or 3.28°10 -2 S -l 3.28 %Lg-m). The performance data of the glider !
give 1/e = 33 at V = 200 km/h. This i#formation assumes that the air density i

10 km up is only 25% of the value near}the ground. All values given for normall

air densities are therefore mu1t1p11ggrpy the factor 2. The performance data ;

of the "Foka 4A" gl1der were used Jn célculatlng all n rerical values (Table l)j
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TABLE 1
o1 -2
V km/h 1/¢ e/V 0 s
m
160 32 0.7
186 34 0.57
200 33 0.54
- 240 27 0.55
280 22 0.59
320 17.3 0.65
360 14.3 0.7
400 12 0.75
k40 10 0.82

The table is based on the performance figures for the Foka LA
giider. The speeds given by the manufacturer are multiplied
by a factor of 2, in order to take into account the fact that
the air density 10 km above sea level is four times iess.

For u = 3.28 - 1072 $™! we obtain the values
a = 33°

and S .
dE

: T - 0-1M

This corresponds to
de m/s
at =3 Me

~ ®r a climb of 3 m/s in the thermal. For the sake of demonstration, let v-u =

= 0.2 g.

" The corresponding values for u = 1.64 ° 1072 s} are
o = 39°

i gg- = 0.025 Mg

A %% = 0.8 Mg m/s

How must the pilot fly in order to attain the calculated values? He knows
neither the mest suitable angle of climb nor the value of u.

N,“CL“ . R .
A pilot cannot calculate any extreme values in flight; for this reason, an
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instrument must take over the job. In flights in the regime under discussion,
the pilot should have an instrument that shows him the value ggu It can be

calculated most simply by means of the equation

"dE _ E*
dh ~ n*

E% is provided by the familiar

UTevar' and éﬁ-by the still more familiar rate-of-climb meter. The quotient
dt q

is obtained from the two values. This is a task that the instrument industry

- This relationship is exactly valid. The value

can probably handle.

The pilot must control the angle of climb so that g%

maximum. The most favorable angle will be somewhat less than 45°.

is c~nstantly at a

The above is a typical statement of the problem for soaring flight. During
flight in a thermal, for example, the most favorable banking angle and speed in
gircular flight are known approximately, They must be re-established at each
new level with considerable piloting skill. The sole criterion is that the

climb must be as great as possible.
2. Estimating the Cruising Speed in the Jet Stream

The energy gain is greater than zeroc. This makes it possible to fly along:
a path.
The flight tactics are as follows:

To begin with, the pilot flies upward along a path with a large angle of
inclination into a layer with a higher wind velocity (Figure 4) and then down
again on a path with a smaller angle of inclination. In order to keep the
calculations simple, we will assume that the difference in height is so slight
that the changes in speed caused by flying upward and downward remain small
relative to the air speed. We then can assume that the speed is constant

during the flight.

|
2 cruising speed VR is obtained by defirition from /5

_X* - X !

“RETETE )|

i

(see Figure 4 for symbols). J
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Figure 3.
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Here t is the duration of the climb and t* is the duration of the descent.

With the aid of t* = S*/v, t = s/v and elementary angle relationships rom
Figure 4, we obtain

sin (o - a*)

v =V o .
€ sin a + sin o

(10)

The angles o and a* are not chosen freely. It i3 necessary to ensure that the

cycle of climbing and descent can be repeated continuously. The integral of

the energy balance during a cycle must be zero, i.e.,

dE dE dE
$dE=¢ cdh=[F d+[F-di=0 (11)
cycle climb descent
Within the framework of our approximation, we obtain with (7) and hclimb =
= hdescent
cos a - —B & 4 cos ar - B 5 =9 (12) -

u*vesin a v-u-sin a*

The calculation of the extreme value of VR = VR (o) with secondary condition
{12) involvesAvague calculations. For this reason, we have calculated two

versions, of which the more suitable will be selected for further study.
Version |

The climb takes place along a path with maximum dE/dh. The descent is
such that Equation (12) is fulfilled. This means the following flight tactics
for the pilot: ‘76

The climb is made in the manner described in Section 1. The pilot notes
the value of gg. The angle of inclination is reduced until g%-is negative and
of the same magnitude as in the climb. This type of flight guarantees that the

cycle can be repeated in full.

With an aircraft of the given performance class (Table 1), we will have | %
for u = 3.28°1072 571 | 5

a* = 7°

and

Vp =V ".0.65 = 130 km/h




The corresponding values for u = 1.64-107% 871 are

a* = 16°
VR =V - 0.44 = 88 km/h
Version 2
The pilot controls the angles of climb and descent so that gﬁ—is equal to
zero. Equations (11) and (12) are thereby always fulfilled. Since 1

dt
= %g V sin a, the pilot requires for this flight regime only a "Tevar" in

addition to his regular instruments.
dE dE .
For the same angle o, az-and aﬁ-have a value of zero. The function

dE _ . . _omeutV
Fr M(v-u-sin a-cos o - ge) = M( >

sin 2o - g-e) =0

has two zero points for 0 < « < 90°. They are calculated from

sin 20 = 2 &% (13)
v-u
For VU >> g-e they are approximately

cos o * BE sina * 1 _
V-u
- (14)

3 * I % X

sin a Vo cos a 1

The error in approximation in this section has a maximum of 6%.

The calculation of the cruising speed is considerably simplified by (14).
We will have
= - BE ¢
Vp =V 1 v-u) (15)

For u = 3.28-1072 S™* we will have a cruising speed of

VR = V-0.84 = 168 km/h

The angles are: o = 80°
a* = 10°

For u = 1.64:10°% s~1 we will have

Vg = V°0.6 = 120 kn/h

with

a!
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a = 70°

a* = 20°

The comparison shows that the second version is superior to the first. In the

following, only the second version will be used in all cases.

The angle of climb in the second version is very steep. Results of the
same magnitude can be obtained by making flights in one direction with large
angles of climb and small angles of descent. This makes it unnecessayy to

change course constantly.

The derived relationships are retained except for the signs. For the
cruising speed we will have, for example,

sin (a+a*
V, = V. — ( i )*
R sin a + sin o

l l

If the angles are small, we will have

a+a*
V, =V -——
R u+a

=V

An accurate analysis of this type of flight probably also gives a high cruisiug/8

speed. The accelerations in this version will be very .mall:~ This is—a fact --

that is of no inconsiderable importance on long-distance flights. Because of
the complicated calculations, this (probably more suitable) version will not be

examined further in this paper.
3. Optimum Air Speed

In the above examples, the air speed and lift-drag ratio were given and
the most favorable angle of inclination for the flight path was calculated as

a function of the particular goal (%% + max or V, »> max), The angles depend,

. R
among other things, on the speed and the lift-drag ratio. We shall now assume

that the polars assumed for stationary flight are also valid for the given

nonsteady flight movements. We will therefore let € = ¢ (V).
3.1. Maximum Energy Gain with Altitude

In Section 1, with a fixed € and V, the most favorable angle of climb was

calculated from Equation (8):

e, - WSORT o B i S e LSRN

.3 . *E
sin Ta o &5, cos o
v
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For the most “avorable air speed we obtain from the condition gv»(gﬁj =0

the relationship

%% = g-sin @ €os a (16)

With (8) and (16), we have two equations for determining « and v. If we
eliminate o from (8) and (16), we will have

2
e de v d¢,3 _u
--d—v-(l-y— =

v € dv- 2 (17
g

This equation is very involved for a numerical treatment. The approximation /3

@ = 45° should be introduced. As the resulits ia Section 1 indicate, this
assumption is justified. Equation (16) then becomes
d_
dv

The evaluation is performed as follows:

1
=7 (18)

e

The value a is calculated from the equation a = 1/2 g-for the corresponding
value of u. A streaight line with the slope z/y = av + b (b is axbitrary) is
éxtended until it intersects the curve € = ¢ (V). Equation—{18) is satisfied —
at the intersection. All values of interest can be caiculated with the values
obtained for ¢ and V (Figure 5). The speeds thus obt:ined are somewhat ‘oo
large, since 1/2 is the maximum of the function sin a - cos a.

The most favorable speed of 39C km/h is obtained for U = 3.28-107% 571,
_ The lift-drag ratio is then 1/13.

The most favorable angle of climb is 37°. Our assumption of a = 45° is

eppr- imately fulfilled. The other values are

dE _
Ew 0.14 Mg

dE
- 'a;-- S Mg m/s

This corresponds to a rise of 9 m/s in the thermal.

The gain achieved by the increase in air speed is considerable. The

optimum air speed decreases with decreasing wind shear. The most favorable

values for u = 1.64'10-2 sl are: '

B id




V = 260 km/h

a = 40°
dE -
F° 0.0027 Mg
dE
— = \
at 1.3 Mg m/s
3.2. Maximum Air Speed /10

The air speed is calculated according to Section 2 (15) from

= 1 . BE
VR =Y (2 v-u )

For the most suitable air speed the condition dVR/dv = 0 cffers the dcfinitive

equation

de _u (19)

dv g
This equation differs from (18) only by the factor 2. The evaluation is per-
formed analogously to the precedure in Section 3.1. We can see immediately
from Figure 5 that for u = 1.64'10_2 S_J the most favorable speed is 390 km/h,
while for u = 3.28:107° 5”1 the pilot should fly at the highest possible speed..
. dr. . u
In the given range, v always remains smaller than — .

The speeds calculated with approximation (15) are somewhat higher than
the optimum speed in reality.

We obtain the following values:

For u = 3.28-10’2 s‘l, we will have V - 440 km/h.

The air speed is VR = 320 km/h, and as the angles of inclination we will
have

a = 75° a* = 15°

According to (19), for u = 1.64-106"% s~} we will have an air speed of 390
km/h (VR = 115 km/h: a = §57°, a* = 33°),

Due to the poor approximation, this value is already somewhat further

removed from the optimum value. For example, for V = 300 km/h the air speed
is already 145 km/h.

12 L

r WQ%W Sebu o MR TERRA S TRt




'S 24nb4

LS 0k 49 = T £2/7n = »
LSy 0k BTET R bz/n =2
\...HN-Q\.\.an\nvﬁ %\5.0.8
, Sp.0p &Y =02 L/n =n»

1§41 saul| |yl jo » ade|s ayy

£ T I'4
. +- - Sind, e AN
m wiy 37y 00€ 007 ~—_ %»./
!liot/}.tvll

r———

v 7




~.
.
[

L, Flight in the Jet Stream

The above estimates indicate that it must be technically possible to make
long soaring flights in the region of strong wind shear in the jet stream. To
be sure, the flight will differ from the conventional type. There are many
more parameters for the pilot to consider. In fiights in thermals and rising
air currents, the rate-of-climb indicatcr or '"Tevar' shows us how we are to
act. In the jet stream, the strong turbulence and the stationary ascending and
descending air currents enter as important factors into the effect of wind shear
shear studied in this paper. The pilot in any case should have available a
device that makes it possible for him to separate the effects of ascending air
currents and wind shear. [t would be a big help if the value u couid be

measured. This might be dones thiough (5). We write this equation in the form

%% + g sin a = vu cos a sin a - ge
dv . . .
where I and g°sin a have different signs.

The magnitude %% can technically be measured by differentiation of the
speed data according to the principle of the rate-of-climb indicater. Then
g sin a is the acceleration in the direction of the flight path. It can be
determined when the lifting force is measured for a mass that can move only in

the direction of the longitudinal axis of the aircraft.

The difference between the two values is a measure of the additional
acceleration that appears as the result of wind shear, less the retardation
caused by air resistance. This difference is independent of the existing
stationary rising and descending air currents. Usable results, as expected,
can be obtained only in the severe retardation and acceleration phases. If
the angle of inclination of the flight path is on the order of 45°, we can
disregard g in this phase and draw conclusions regarding the value of the wind

shear.

For the pilot, the indication /12

dv .
D= &Eﬂ* g sin a

would have the following significance:
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1. During flight along an inciinced path, D as well as %% and g% are
positive.

This is an indication that the energy gain is a consequence of the
existing wind shear. A flight maneuver in accordance with the versions
described above should be carried out. If D and %% and %% are negative, the
direction of flight should be reversed.

. dE dE ‘s . .
2. D is zero, N and 3t are positive. In this case, the energy geinm can

be attributed to a stationary rise. The pilct should fly in circles or

straight ahead. The pilot's stomach will be responsible for this dec.sion.

3. D is positive and g% is less than zero; the energy gain due *o wind
shear is negated by powerful downward air currents. The pilot musi repeat

the flight mapeuver with alternating climbing and descent.

It should also be pointed out here that flights must be mide on sharply

inclined paths to determine the wind shear.

A long-distance flight in the jet stream could proceed as follows:

e ———-

by meteorologists, flight along a path inclined at 40-45° is assumed and the

value of D is observed. If it is markedly different from zero, the pilot can

leave the wave and begin the climbing and desc.ut cycle. As long as D is not

equal to zero, the pilot is in a zone o. strong wind shear. Even if %&-or %%

is less than zero, there is no need for concern. If D is equal to zero and ‘
g%-or %% is positive, the »ilot should fly in circles or straight ahead. If helli

stops climbing, he must r:sume flight oh an inclined path in order to find

areas with strong wind saear. This continues until the jet stream is lost.
Then the pilot continues flying in the thermal at lower altitude. It is to
be expected that in view of the high wind velocity in the jet stream (up to
200 km/h) and the high air speed relative to the air (up to 300 km/h according
to this estimate), very high speeds relative to the ground (up to 500 km/h) can?
be attained. The numerical vzlues obtained constitute a rough approximation. .
They do show, however, that more attenpion should be given to dynamic soaring. }-
All of the relationships obtained ﬁndicate that rather fast aircraft may i
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be used for flying in the jet stream. For this reason, jet trainers are very
valuable for test flights in the jet stream. The poorer litt-drag ratio that
they have relative to gliders is compensated by their higher speed. They can

reach the required altitudes without difficulty and can also fly the somewhat
complex patterns.
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For the most ‘avorable air speed we obtain from the conditidﬁ»av-(%ﬁd-; 0

the relationship

g% = gvsin @ COS a (16)

With (8) and (16), we have two equations for determining « and v. If we

eliminate a from (8) and (16}, we will have

2
e de v de 3 _u
vawlrterw) t 2 (7

This equation is very involved for a numerical treatment. The approximation Iz
a = 45° should be introduced. As the results ia Section 1 indicate, this
assumption is justified. Equation (16) then becomes

- d
o dvr

The evaluation is performed as follows:

-1lu '
i2goo (18).

The value a is calculated from the equation a = 1/2 g-for the corresponding
value of u. A strazight line with the slope &/y = av + b (b is axbitrary) is .
éx%ended»untf} it intersects the curve ¢ = ¢ (V};~~E§uation—fi8) ismsatisfied——f
at the intersection. All values of interest can be caiculated with the values |
§btained for € and V (Figure 5). The sgeeds thus obt:ined are somewhat <co
large, since 1/2 is the maximum of the functiomn sin a - cos a.

- The most favorable speed of 39C km/h is obtained for U = 3.28-10”2 S'l.

The 1lift-drag ratio is then 1/13.

—

The most favorable angle of climb is 37°. Our assumption of a

J—

45° is |
eppr imately fulfilled. The other values are '

= 0.14 Mg

&& 58

= 9 Mg in/s

- This corresponds to a rise of 9 m/s in the thermal.

- i

The gain achieved by the increase in air speed is considerable. The

optimum air speed decreases with decreasing wind shear. The most favorable

values for u = 1.64'10'2 g1 are: 1
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